CFPO-20,-21,-22,-23 TC-OCXO

ISSUE 1; 19 AUGUST 2004

Preliminary Specification

Recommended for new designs

Delivery Options

Please contact our sales office for current leadtimes

Description

A series of high stability crystal oscillators, using a hybrid combination of oven control and temperature compensation capable of sub 0.05ppm stability. By using a loosely controlled miniature oven that is thermally isolated from the ambient the frequency stability of a crystal oscillator is enhanced. Stability is further improved by compensating the residual frequency error with C-MAC's proprietary ASIC "Pluto", a single chip oscillator with analogue compensation circuit. The combination of these two functions result in an oscillator with the best stability / power consumption ratio and fast warm-up, making it particularly suitable for battery powered applications

Standard Frequencies

- HCMOS only: 5, 6.4, 8, 8, 192MHz
- HCMOS & Clipped Sinewave 10.0, 12.8, 16.0, 16.384 and 20.0MHz
- Other frequencies in the range 1.25 to 33MHz may be available upon request

Waveform

Standard

Square HCMOS 15pF load

Clipped Sinewave $10k\Omega$ // 10pF, AC-coupled

Optional

Square ACMOS 50pF max. load Sinewave 10kΩ // 10pF, DC-coupled

Supply Voltage

Operating range 3.3V or 5.0V, see table.

Input Power	-20 to 70°C	-40 to 85°C
■ Warm-up	≤ 1.0W	≤ 1.0W
 Steady state @ 25°C 	≤ 270mW	≤ 350mW
 Steady state @ -20°C 	≤ 400mW	≤ 525mW
Steady state @ -40°C		≤ 600mW

Warm-up time to reach ±0.01ppm of final frequency

< 30 secs. (@25°C)</p>

Ageing

- ±1ppm maximum in first year, frequency ≤ 20MHz
- ±2ppm maximum in first year, frequency > 20MHz
- ±3ppm maximum for 10 years, frequency ≤ 20MHz ±5ppm maximum for 10 years, frequency > 20MHz
- ±1ppm maximum after reflow

Frequency Stability

- Temperature: see table
- Supply Voltage Variation, $\pm 5\%~\pm 0.1$ ppm typ. Load Coefficient, 15pF ± 5 pf (HCMOS) or 10k Ω // 10pF ±10% (clipped sinewave) ±0.1ppm typ.

Frequency Adjustment, three options

- Ageing adjustment by means of external Voltage Control applied to pad 1 (standard option)
 - Range (frequency ≤ 20MHz) ≥ ±5ppm
 - Range (frequency > 20MHz) ≥ ±7ppm ≤ 0.5% Linearity Positive Slope
 - ≥ 100kΩ Input Resistance Modulation Bandwidth $\geq 2kHz$
 - Standard control voltage range 1.5V±1V Ageing adjustment by means of an external $100k\Omega$ potentiometer connected as a variable resistor from pad 1 to ground.
 - Range (frequency ≤ 20MHz) ≥ ±5ppm ≥ ±7ppm
 - Range (frequency > 20MHz) No frequency adjustment
 - Initial calibration $< \pm 0.5$ ppm

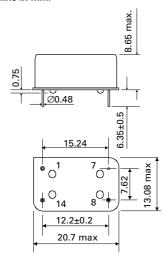
Storage Temperature Range

-55 to 125°C

Environmental Specification

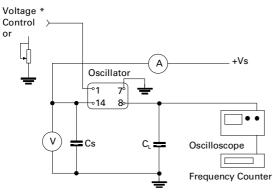
- Vibration: IEC 60068-2-6, test Fc, procedure B4: 10-60Hz 1.5mm displacement, 60-2000Hz at 20gn, 4 hours in each of three mutually perpendicular axes at 1 octave per minute
- Shock: IEC 60068-2-27, test Ea: 1500gn acceleration for 0.5ms duration, Half sine pulse, 3 shocks in each direction along three mutually perpendicular axes
- Marking: Laser Marked

Marking, includes


- CMAC
- Part number (Pxxx)
- Pad 1 / Static sensitivity identifier (triangle)
- Device date / location code

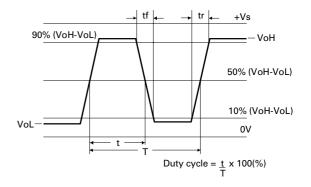
Package

Hermetically sealed, industry standard, DIL 14/4 leaded package


Outline in mm.

Pin Function

- Frequency Adjust (leave unconnected in case the 'no frequency adjust' option has been ordered)
- 7. GND
- 8. Output
- 14. +Vs


Test Circuit

 $\rm C_L$ = Load 15pF (HCMOS or 10k Ω // 10pF (Clipped Sinewave), inclusive of probe and jig capacitance. $\rm CS$ = 100nF

*The GND of the control voltage needs to be connected directly to pin 7 as ground lead impedance my cause performance degradation

Output Waveform - HCMOS

Phase Noise (typical figures)

Eroguepov	Frequency offset from carrier				
Frequency	10Hz	100Hz	1kHz	10kHz	100kHz
12.8MHz	-95dBc/Hz	-115dBc/Hz	-135dBc/Hz	-140dBc/Hz	-145dBc/Hz

Electrical Specification - limiting values when measured in test circuit

Frequency Range	Supply Voltage	Output Waveform	Output Levels	Rise Time (t _r)	Fall Time (t _f)	Duty Cycle	Model Number
1.25 to 33.0MHz	3.3V ±5%	Square HCMOS 15pF	VoH ≥90% Vs VoL ≤ 10% Vs	7ns	7ns	45/55%	CFPO-20
1.25 to 33.0MHz	5.0V±10%	Square HCMOS 15pF	VoH ≥90% Vs VoL ≤ 10% Vs	8ns	8ns	45/55%	CFP0-21
10.0 to 33.0MHz	3.3V±5%	Clipped Sinewave 10kΩ//10pF	Vpk-pk ≥0.8V	-	-	-	CFPO-22
10.0 to 33MHz	5.0V±10%	Clipped Sinewave 10kΩ//10pF	Vpk-pk ≥0.8V	-	-	-	CFP0-23

Frequency Stability Available Over Operating Temperature Ranges

Operating Temperature	Frequency Stability Vs Operating Temperature Range						
Ranges	±0.025ppm	±0.05ppm	±0.1ppm	±0.2ppm			
-20 to 70°C	Code PS*	Code RS	Code SS	Code MS			
-40 to 85°C	=	Code RX	Code SX	Code MX			
Ordering Example 14.4MHz CFPO-20 SX A Frequency Model No. Frequency Stability Vs Operating Temperature Code Frequency Adjustment							
Note: * Codes may not be available for all frequencies							

Minimum Order Information Required

■ Frequency + Model Number + Frequency Stability vs Operating Temperature Range Code + Frequency Adjustment Code

OR

■ Discrete Part Number

Custom Specification

Non-standard requirements like high drive ACMOS output, low harmonic sinewave output, different supply and control voltages, high frequency pulling, different stabilities and temperature ranges may be available upon request. Please contact our sales office to discuss your requirements

